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Disease evolution on networks: the role of contact
structure
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Owing to their rapid reproductive rate and the severe penalties for reduced fitness, diseases are under
immense evolutionary pressure. Understanding the evolutionary response of diseases in new situations
has clear public-health consequences, given the changes in social and movement patterns over recent
decades and the increased use of antibiotics. This paper investigates how a disease may adapt in response
to the routes of transmission available between infected and susceptible individuals. The potential trans-
mission routes are defined by a computer-generated contact network, which we describe as either local
(highly clustered networks where connected individuals are likely to share common contacts) or global
(unclustered networks with a high proportion of long-range connections). Evolution towards stable stra-
tegies operates through the gradual random mutation of disease traits (transmission rate and infectious
period) whenever new infections occur. In contrast to mean-field models, the use of contact networks
greatly constrains the evolutionary dynamics. In the local networks, high transmission rates are selected
for, as there is intense competition for susceptible hosts between disease progeny. By contrast, global
networks select for moderate transmission rates because direct competition between progeny is minimal
and a premium is placed upon persistence. All networks show a very slow but steady rise in the infec-
tious period.
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1. INTRODUCTION

Evolution is one of the few universal concepts in biology,
and implementation of evolutionary theory allows us to
understand the observed characteristics of organisms. Gen-
erally this has been applied to the social behaviour of large
creatures (Axelrod & Hamilton 1981; Ridley 1996;
Clutton-Brock et al. 1998) although it also holds for the
demographic attributes of all organisms. Owing to their
relatively simple natural history and rapid life cycle, diseases
provide the ideal opportunity to understand their dynamics
in terms of an evolutionary adaptation to their environ-
ment. Here, we take preliminary steps towards this goal.

On a more immediate time-scale the evolution of infec-
tious diseases poses a significant dilemma for practitioners
of disease control. For example, the development of anti-
biotic resistance (Baquero & Blázquez 1997) within the
pathogen population, and the emergence of novel strains
for which no herd immunity exists (e.g. the emergence of
novel influenza strains) are both serious threats to human
health. Selective pressure is likely to be very high for such
resistant diseases of humans, given the resources expended
on control and eradication (e.g. antibiotic and vaccine
use). This, coupled with the relative shortness of pathogen
life cycles, means the evolutionary development of disease
is also likely to be rapid. The ability to predict the prob-
able consequences of control measures for the evolution
and emergence of disease behaviour is therefore of great
importance.

The vast majority of models of disease evolution make
two basic assumptions. First, they assume that the popu-
lations of host and pathogen are well mixed. In well-mixed
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(mean-field) populations all individuals have an equal like-
lihood of encountering infection, and hence the resulting
force of infection is equal for all (Anderson & May 1992).
Second, the models assume that there are a priori con-
straints upon the range of evolutionary outcomes, often
involving disease virulence (Anderson & May 1992; Frank
1992; Mosquera & Adler 1998; Boots & Sasaki 1999).
Although the within-host dynamics of diseases and their
interaction with the immune system will place some con-
straints upon the possible population-level dynamics
(Read & Schrag 1991; Messenger et al. 1999), there are
currently very few data to suggest either the range and
form of these constraints or whether they are likely to have
a major impact.

Spatial heterogeneity and the local nature of interac-
tions have been demonstrated to have profound effects on
the transmission and persistence of diseases (Comins et al.
1992; Grenfell & Harwood 1997; Wallinga et al. 1999;
Keeling 2000a), and to produce qualitative changes in
ecological and evolutionary dynamics in general
(DeAngelis & Gross 1992; Nowak & May 1992; Tilman &
Kareiva 1996). The standard mean-field models ignore
three important properties of human disease-transmission
networks: first, the finite number and variability of poten-
tial contacts—these lead to the build-up of spatial corre-
lations (Keeling 1999) and heterogeneities of risk between
individuals; second, the ‘small-world’ property, where, on
average, any two individuals are connected by a small
number of social or transmission steps (Milgram 1967;
Watts & Strogatz 1998); and finally, the clustering of
social contacts such that adjacent individuals in contact
space are likely to have many shared social or sexual con-
tacts—a simple example being ‘my friends are likely to
know each other’ (this characteristic is referred to as ‘tran-
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sitivity’ in social-network literature (de Sola Pool &
Kochen 1978; Wallinga et al. 1999)). These properties are
evidenced by studies of social-contact networks (de Sola
Pool & Kochen 1978; Klovdahl et al. 1994), networks of
injecting drug users (Friedman et al. 2000) and sexual net-
works (Klovdahl 1985; Potterat et al. 2002). Thus, while
mean-field models have proved a useful tool in under-
standing and developing epidemiological theory, the com-
plex nature of potential infection transmission routes
(whether in real space, or in the more abstract contact
space) could have severe implications for the reliability of
predictions made by such methods.

In this paper, we consider how the social structure of a
population, in the form of a contact network, affects the
evolutionary selection of the parameters determining
infectious-disease transmission dynamics. Specifically, we
consider how the routes available for the infection to
spread through such networks determine the adaptation
of the transmission rate and the infectious period. This is
a complex process with multiple feedbacks at a variety of
spatial and temporal scales. In particular, while the net-
work has a strong influence on the evolution of the dis-
ease, the disease dynamics in turn modify the available
susceptible network. The next section sets up the model
framework and describes the basic disease dynamics
within the contact network. Section 3 describes the vari-
ous simulations that have been performed in order to tease
apart the evolutionary forces. Finally, § 4 considers the
long-term evolutionary behaviour of the diseases, con-
trasting the influences of local and global networks.

2. MODEL DESCRIPTION

The epidemic and endemic dynamics of infection within
a network of susceptible individuals have been studied
using lattice models (Mollison 1977; Rand et al. 1995;
Levin & Durrett 1996; Rhodes & Anderson 1996), small-
world models (Watts & Strogatz 1998; Moore & Newman
2000; Kuperman & Abramson 2001; Pastor-Satorras &
Vespignani 2001; Zekri & Clerc 2001) and pairwise corre-
lation models (Keeling 1999; Ferguson & Garnett 2000).
However, these methods of approximating spatial or net-
work structure generally suffer from a lack of heterogen-
eity at the individual level, and most have severe difficulty
incorporating birth and death processes in a biologically
realistic manner. For example, if individuals that recover
from infection are simply replaced by susceptible individ-
uals, then such births (new susceptibles) become spatially
correlated with incidence of disease. Moreover, where new
susceptibles are recruited in adjacent locations to suscep-
tibles (Keeling 2000b), severe local density dependence is
invoked and the location of births becomes negatively cor-
related with infection. The spatial structure that develops
is unrealistic for general human or animal populations and
may have a large qualitative impact on the results.

The model presented here attempts to overcome these
limitations by direct simulation of the spread of infection
through a computer-generated network. Individuals are
distributed randomly in space with an average density of
one individual per unit area (figure 1a,b). The distance
between individuals determines the probability that a link
(representing a potential pathogen transmission route) is
formed between them. This connection probability kernel
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is formulated such that the expected number of links per
individual (n) and the average distance between linked
individuals (D) may be predetermined (see Appendix A).
Thus, a range of possible network configurations may be
considered, forming different ‘landscapes of selection’
within which a disease can spread, adapt and persist. In
particular we consider two distinct forms of network,
classified according to the shape of the kernel. Local net-
works are highly aggregated, with many social cliques
(high transitivity), and hence share many properties with
the social networks associated with the transmission of air-
borne pathogens. Global networks are dominated by ran-
dom long-distance connections, and possess few cliques
(low transitivity); they are therefore a more extreme ver-
sion of the transmission routes involved in the spread of
sexually transmitted diseases (based on analysis of the
social and sexual network data presented by Klovdahl
(1985)). This analogy between our static networks and the
dynamic behaviour of human social and sexual networks
should be used cautiously; our networks represent two
structural extremes and hence are merely qualitative cari-
catures. A quantitative model of realistic human trans-
mission networks would require vast amounts of detailed
sociological data, and would be more difficult to analyse
and understand.

Communication through a global network is much fas-
ter than through a local network, even though both have
the same average number of contacts per individual (figure
1). This crucial difference has profound consequences for
the spread of infection and the selection of infectious-dis-
ease behaviour. An important feature of the contact struc-
ture is the heterogeneity of contacts per individual (figure
1c,d): a few individuals have far more contacts than aver-
age. This is a generic property of human contact networks
(Klovdahl 1985; Klovdahl et al. 1994; Brisson et al. 1999;
Rosenburg et al. 1999; Liljeros et al. 2001) that is generally
omitted from non-network models (e.g. cellular automata
and small-world models).

Birth and death rates of the host (b and d, respectively)
are assumed to be equal and independent of modelled
population size, although the model does not specifically
require this. New susceptibles (births) are introduced at
random locations in contact space and connected to other
individuals according to the distance between them, with
a probability specified by the connection kernel (see
Appendix A). The death of an individual simply removes
them from the network, together with any associated con-
tact links.

The infection statuses of individuals are divided into
three discrete classes: susceptible, infectious and recovered
(SIR) as in the traditional SIR model framework
(Anderson & May 1992). All individuals begin life as sus-
ceptibles. A susceptible in contact with an infectious indi-
vidual becomes infected by that particular strain of the
disease at a strain-specific probabilistic rate t (see Appen-
dix A). Infected individuals remain in this class for a fixed
period (Pin f ), determined by the infecting strain, during
which they maintain a constant level of transmission to all
their contacts. Finally, the host’s immune system is
assumed to combat the infection, and they move directly
into the recovered class, where individuals are no longer
infectious and are assumed to have full immunity from
further infection. For simplicity, we assume no multiple
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Figure 1. Example regions of (a) local and (b) global networks, showing individuals (black circles) and their contact links (grey
lines). The distribution of contacts per individual, n, for (c) local and (d) global networks. Finally, to demonstrate the
connectivity of the entire network, we calculate the proportion of the network reached, p, in t steps from a random individual
in each network type, (e) local and ( f ) global; the solid line is the mean of 100 such procedures, and the dashed lines are the
standard deviations of the mean.

infections and that, once recovered, an individual acquires
full cross-immunity to all possible strains of the disease.
This allows us to consider the evolution of one dominant
infection strategy, without the complication of multiple
coexisting strains of infections (Gog & Swinton 2002).

In this model, disease strains have two characteristic
components that determine their local behaviour: the pro-
babilistic transmission rate between an infected and a sus-
ceptible individual across a link (t) and the duration of
infection (Pin f ). Both of these characteristics are inherited
from ancestral infections with mutation and, for sim-
plicity, are assumed to mutate independently (see Appen-
dix A). Thus, as in nature, evolution proceeds via the
accumulation of many random mutations.

As the transmission of infection is a stochastic process
and the population size is finite, we can expect to observe

Proc. R. Soc. Lond. B (2003)

extinctions of the disease. To counteract this, a low level
of infection is assumed to enter the population from an
external source, at a probabilistic rate m. These imported
infections are positioned at random in contact space, and
are connected using the appropriate kernel (in the same
way as births); their characteristic parameters follow the
most recent strain parameters within the network (see
Appendix A). Thus, imports will not cause dramatic
jumps in disease parameters, and they act as if we are
observing the dynamics in a single element of a weakly
coupled metapopulation (Grenfell & Harwood 1997).

3. SIMULATIONS

A typical simulation consists of the following sequential
events: network generation, the introduction of disease
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Table 1. Values assigned to parameters in simulations.

parameter meaning value

N population size 10 000
T time-period of simulation (iterations) 100 000
n average contacts per individual 8
D measure of connection distance 1 (local) or 50 (global)
b average births per iteration 0.39
d average deaths per iteration b
m infected immigrants per iteration 0.01
std(t) mutation distance in transmission rate 0.05
std(Pinf ) mutation distance in infectious period 0.5
initial t initial transmission rate 0.025
initial Pinf initial infectious period (iterations) 20

into the susceptible population, and subsequent iterations
until the end of the allotted simulation time (T). During
an iteration, births and deaths may occur, individuals may
become infected or recovered (depending on their status
and circumstance) and the import of infection may occur.
A full account of assigned parameter values is given in
table 1.

Networks of susceptibles were generated using the pre-
scribed connection kernel. Two main network forms were
simulated: local connections, with an average of eight con-
tacts per individual; and global connections, also with an
average of eight contact neighbours. These correspond to
two extreme levels of contact structure, and allow us to
ascertain the effects of cliques within host populations on
the evolution of transmissible disease.

Initially, a single individual was infected by a disease
strain with t = 0.025 and Pin f = 20 iterations. Average daily
birth and death rates were chosen to maintain a stable
population size, and to set the average lifespan of the host
at 25 550 iterations—if each iteration corresponds to 1 day
then the average host lifespan is 70 years. In most human
societies, however, removals and additions to contact net-
works (in our model, deaths and births) may occur much
more rapidly, and therefore an iteration may correspond
to a far shorter time-scale. Hence, the evolutionarily stable
parameters are not only functions of the network struc-
ture, but also scale directly with the rate of turnover of
connections. (One simulation therefore corresponds to
about four complete regenerations of the network.)

The model population status was updated synchron-
ously, and most simulations were performed for up to
100 000 iterations; a few longer (T = 1 million iterations)
simulations were also performed to check the long-term
validity of results. Stochasticity enters our model formu-
lation from four distinct sources: the demographic dynam-
ics that determine the network, occasional imported
infection, the transmission of infection, and the random
mutation of strain parameters. Therefore, to observe gen-
eral trends, 100 replications were made of each treatment,
and the disease parameters and timing of every new infec-
tion were recorded.

4. RESULTS

The standard mean-field model of SIR-type infection
predicts that if two strains are competing for susceptible
hosts, the strain with the greater basic reproductive ratio,
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R0 ~ t.Pin f, will always outcompete the other. Stochastic
birth, death and transmission processes do not signifi-
cantly alter this conclusion (figure 2a,b). Therefore, evol-
ution will always favour infections with greater values of
R0, so that in such mean-field models we observe runaway
behaviour with selection for ever higher transmission rates
and ever longer infectious periods. In particular, determin-
istic theory supported by stochastic simulations of this
process (figure 2a,b) predicts that the transmission rate
experiences by far the strongest selective pressure and
therefore increases most rapidly.

In contrast to the mean-field models, the results from
network simulations consistently show more constrained
evolutionary behaviour (figure 2; note the disparity of
time-scales): the rate of evolutionary change is far slower
and is not limited simply by the mutation rate. The evol-
utionary dynamics also show greater variability than their
mean-field counterparts, being strongly influenced by
recent epidemic history. In particular, there is strong
selection against rapid changes in R0. Large reductions in
the value of R0 render the infection unable to survive in
the environment. However, there are also severe penalties
for high transmission rates: an infection with a high trans-
mission rate will spread rapidly through all accessible sus-
ceptibles within a connected cluster. In such a scenario,
there is an increased risk of the host resource becoming
exhausted before enough births are introduced to provide
a link to other susceptible parts of the network (host
‘burn-out’); extinction of the strain lineage is therefore
more likely to occur (Rand et al. 1995; Keeling 2000b).
Thus the dynamics are naturally constrained to evolve
much more slowly than the mutation rate allows.

Within the global networks, average transmission rate
evolves to an asymptotic optimum rate, t < 0.16 (figure
2f ). Short-duration and low-transmission strains are
strongly selected against, as the ability of the disease to
infect would be severely reduced, while very high-trans-
mission strains are not favoured because of the increased
risk of depleting the susceptibles and the consequently
greater risk of extinction. However, an increase in the
birth rate (increased ‘restocking’ of the susceptible
population) should result in a decreased extinction risk,
and in correspondingly reduced penalties for high trans-
mission rates in global networks. Indeed, in additional
simulations performed, where b = 3.9, disease extinction
ceased to occur, the infection became endemic, and very
high transmission rates were selected for.
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Figure 2. Evolution of average strain characteristics from a stochastic mean-field model (a,b), and within local (c,d) and global
(e,f ) networks. For the mean-field model (a) and (b) show the average infectious period (Pinf ) and transmission rate (t)
respectively per iteration across 100 simulations. For the local and global networks, the parameters are averaged over 1000
iterations, and again 100 simulations are used. Although all models use the same mutation rates, the mean-field model shows
far more rapid dynamics—note that the mean-field behaviour is shown over a much shorter time-scale.

By contrast, no such optimum transmission rate is
reached in the local-network simulations within the stan-
dard time-frame simulated. When simulations were
performed over a greater time-period (T = 1 million
iterations) transmission rate steadily increased in local net-
works. Local networks are characterized by a high aggre-
gation of contacts and the forming of small social cliques,
and this attribute generates a strong selective pressure on
infections. As any two connected individuals generally
share some mutual contacts, direct competition between
disease progeny for available susceptible hosts is likely to
be commonplace, causing selection for a more rapid trans-
mission rate. That no optimum transmission rate is
attained in local-network simulations suggests that this
competition is a far stronger selective force than the
increased risk of extinction.

No optimum infectious period is attained in either local-
or global-network simulations, and Pin f gradually increases
throughout the simulation, though at a greater rate in glo-
bal networks. We have found this to hold true even in
simulations of longer duration.
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The differences between the evolutionary behaviours on
local and global networks are clearly the result of the gov-
erning network structure and connection kernel. To
understand how, we must consider how successive infec-
tions, and birth and death processes, alter the available
transmission network of susceptibles. In a typical simul-
ation, there is an initial large epidemic that quickly
depletes the number of susceptibles. During this period,
evolution is rapid, owing to the fast turnover of infection
and the high selective pressures upon disease strains with
parameter values near the initial values. In all of our simul-
ations, disease extinction occurs when the level of suscep-
tibles is driven so low that only very small susceptible
‘clusters’, which cannot support the infection, remain.
The infection at this moment has previously evolved only
in an environment of abundant susceptibles. In simula-
tions where the birth rate is dramatically increased, these
isolated clusters soon become connected, and the disease
can persist.

Under normal circumstances, with subsequent iter-
ations, births gradually increase the number of suscep-
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Figure 3. Characteristics of susceptible clusters at the end of the simulation, t = 100 000. The probability, p, of a susceptible
individual selected at random belonging to a particular cluster size in (a) local- and (b) global-network simulations, across all
replicates. The average number of contacts per individual member of a cluster, n, plotted against the total size of the cluster in
(c) local and (d) global networks.

tibles, and connectivity between susceptibles also
increases. The subsequent reintroduction of an infectious
individual (infectious import; see Appendix A) may cause
a small epidemic that is localized to the cluster of connec-
ted individuals it happens to infect.

The size of the resulting epidemic (if there is one)
depends on the size and the density of these susceptible
clusters, which are determined by three interrelated factors:
the location and magnitude of previous epidemics, the
rates of infectious import and birth, and the contact kernel
determining network connections. Previous epidemics
form ‘barriers’ of recovered individuals between clusters
of susceptibles that may isolate them from subsequent
infection (Rand et al. 1995; cf. Friedman et al. 2000). Iso-
lated susceptibles become more connected with time, as
new susceptibles (births) are added to contact space, con-
necting previously isolated individuals and clusters: birth
rate and infectious-import rate effectively govern the inter-
val between epidemics. How an individual connects to the
existing population will also influence subsequent epi-
demic dynamics, as globally connected individuals will
tend to form a network that facilitates disease spread.
Thus, the disease dynamics influence the available suscep-
tible network, which, in turn, determines future epidemic
behaviour and the evolutionary dynamics of the disease.

Figure 3 shows the likelihood of a reintroduced infec-
tion encountering a suitable cluster of susceptibles for
both network types at the end of the simulations; this
snapshot of the average network is representative of net-
works throughout the latter half of the simulations. In gen-
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eral, the local network develops small clusters of highly
connected individuals (each individual has many suscep-
tible neighbours), whereas the global network develops
larger weakly connected clusters (the average number of
susceptible neighbours is consistently no more than two).
These differences arise primarily from the ease with which
infection spreads across the entire network: in the local
network, where spread is more restricted (figure 1e), clus-
ters may remain isolated and uninfected for longer periods
of time, allowing them to grow. The characteristics of such
susceptible clusters can be used to explain the different
evolutionary forces that are operating.

In the small well-connected clusters of local networks
there are many short loops between individuals adjacent
in contact space. Thus, a strain’s progeny (secondary
infections) are more likely to be in direct competition for
available hosts. This leads to ‘scramble’ competition,
where the most transmissible strains are the fittest: those
progeny with the fastest transmission rates are likely to
produce the most descendants in the next generation. It
is therefore not surprising that high transmission is selec-
ted for, as this is the only way that a strain can outcompete
other strains, even though it confers an increased chance
of extinction, as the strain will infect and ‘burn through’
the cluster in a shorter time. Interestingly, this is contrary
to some well-established views on altruistic behaviour, in
which spatial clustering generally promotes self-sacrifice
(May et al. 1995; van Baalen & Rand 1998).

By contrast, in a global network, progeny are unlikely
to be in direct competition for hosts, so a moderate trans-



Evolution on networks J. M. Read and M. J. Keeling 705

mission rate that balances persistence against infection is
an evolutionarily stable strategy. In all situations, diseases
face a trade-off between leaving a suitable environment for
their progeny (the conservation of susceptible hosts) and
the immediate benefit of producing a large number of sec-
ondary infections (causing rapid depletion of immediately
available susceptibles)—this places a natural constraint on
the evolutionary dynamics. The network structure deter-
mines where the trade-off between long-term and short-
term gains lies. The dominant selective force in global net-
works is the ability to persist, whereas in local networks
ability to infect is most important.

Longer infectious periods are selected for in both local
and global networks; indeed, even when the initial starting
strain has a very long infectious period (Pin f = 100
iterations), selection still acts to increase it. Therefore,
while it is clear that a high transmission rate destroys the
local patch dynamics for future generations, a longer
infectious period has no such disadvantage. The strength
of selection for long infectious periods is, however, very
weak and variable, relative to the strength of selection for
transmission rate, although statistical tests show that the
infectious period is not simply undergoing a random walk.
Therefore, while an unconstrained model predicts the
slow continual increase in Pin f, even small physiological
constraints or trade-offs could easily overcome this.

Figure 4 shows the average direction and strength of
evolution at each parameter value: as such it represents
the evolutionary bias to the random drift caused by
mutation. We stress that these are average quantities; the
actual values are subject to large amounts of stochasticity
and are highly dependent upon the recent epidemic and
evolutionary history. Low values of transmission rate or
infectious period have large evolutionary forces acting
towards increasing values. Both types of network show
some evidence for a stable fixed point (an evolutionarily
stable strategy) but this is strongly influenced by the stoch-
astic nature of the evolutionary dynamics. The global net-
work clearly has a fixed point close to t = 0.1; however, in
this region the selective pressure on the infectious period is
weak and we expect to observe a random drift to ever
higher values. For local networks, there is again a weak
locally stable fixed point, but once stochasticity pushes the
disease parameters away from the immediate vicinity of
this point, we expect to see runaway evolution to ever
higher values. Thus, these evolutionary diagrams support
our earlier conclusions.

A similar pattern for transmission rate and infectious
period is observed when the average number of contacts
per individual is doubled (n = 16). Owing to the increase
in the number of contacts, comparable levels of trans-
mission translate into a doubling of the reproductive ratio
R0. As the number of neighbours increases, so the system
becomes more like the mean-field models, which experi-
ence runaway evolution—so we may predict selection for
higher transmission rates than when n = 8. This is what we
find in global networks: doubling n increases the optimal
transmission rate; however, in the local networks, the evol-
ution of transmission rate is unaffected. These dynamics
can again be attributed to the structure of available sus-
ceptible clusters. Increasing n reduces the number of large
susceptible clusters in the global network, as it is less likely
that they remain isolated, and so are more likely to be
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infected. However, increasing n has little effect on suscep-
tible-cluster properties in local networks, which are
determined largely by the disease dynamics. These
phenomena highlight the complicated relationship
between evolution of pathogen and network in our model.

5. DISCUSSION

Standard homogeneous models for disease dynamics
ignore the heterogeneities and correlations that develop in
the realistic spread of infection across a network of con-
tacts. In mean-field models, those strains with the largest
reproductive ratio dominate, and therefore constraints or
trade-offs need to be included to achieve meaningful evol-
utionary behaviour (Anderson & May 1992; Frank 1992;
Mosquera & Adler 1998; Boots & Sasaki 1999). By con-
trast, we have shown here that the dynamics of infection
through a network place strong constraints on evolution-
ary behaviour, and, in particular, that the form of the net-
work can determine the evolutionarily stable parameters
of a disease.

The history of epidemics largely determines the course
of the evolutionary behaviour of a disease: once a network
pattern has emerged it is difficult for radically different
strains to invade and take over. Essentially, any new
strains with a lower reproductive ratio (and in particular
a lower transmission rate) are immediately outcompeted;
however, although those with a higher reproductive ratio
do better locally, they rapidly deplete the environment of
susceptibles, thereby disadvantaging their progeny. The
balance between immediate reproductive gain and preser-
vation of the local environment for one’s descendants is
central to the evolution of diseases, and may have parallels
in the evolution of other natural enemy systems.

We have considered two distinct forms of network, local
and global, as caricatures of two extreme types of human
contact network structure. The host demography was para-
meterized according to human lifespans and assuming that
network connections were made for life. Assuming a
shorter lifespan or a more rapid turnover of connections
should be reflected in a simple rescaling of all parameters.
Obviously, the true mixing patterns of humans are far more
complex than can be captured by such simple networks,
but the full simulation of realistic scenarios is beyond the
scope of this paper and of current computational power.
However, our results suggest that differences in observed
disease behaviour may be explained by the character of
contact networks, without necessarily invoking other
constraints such as virulence–transmission trade-offs
(Bonhoeffer & Nowak 1994; Messenger et al. 1999).

While the transmission rate is clearly constrained by the
network dynamics, the infectious period consistently
shows a slow increase with a clear deterministic compo-
nent. This evolutionary trend is far slower, however, than
in the mean-field models, suggesting that even a very weak
functional trade-off between transmission rate and infec-
tious period would be sufficient to balance the dynamics.
Evidence for such a trade-off can be observed in sexually
transmitted diseases (Blanchard 2002), although whether
this is the result of physiological constraints, or the result
of evolutionary processes, is not clear. The most obvious
candidates for creating trade-offs would be host coevol-
ution, or the interaction of the disease with the host
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Figure 4. The direction and strength of strain evolution over parameter space for (a) local and (b) global networks. The
arrows show the average evolutionary trajectory of simulations that pass through each region of parameter space. The size of
the arrow indicates the speed of evolution, while the shade indicates the amount of data available and therefore the certainty
of the prediction (black is for the most data).

immune system—both of these factors would add con-
siderably to the computational costs of the model.

In essence, our model predicts that diseases that trans-
mit via networks that consist of many long-distance ran-
dom connections (non-cliquey) should have conservative
transmission rates and long infectious periods. By com-
parison, where a disease transmission network contains
many cliques, diseases should possess very high trans-
mission rates and shorter infectious periods. Examples of
human contact networks that are unambiguously local or
global in character are difficult to identify: real networks
tend to contain the structural characteristics of both local
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and global networks (see Klovdahl 1985; Klovdahl et al.
1994; Potterat et al. 2002), and links are not usually static
for the lifetime of an individual. More research is required
to evaluate the impact of such attributes on our predic-
tions. In addition, we have found that both the average
number of contacts per individual and the rate of contact
turnover affect selection pressure; the comparison of dis-
ease characteristics found on real networks is likely to be
confounded by differences in these qualities. This suggests
that predicting the likely evolutionary effects of social
change on human diseases may be complicated by the
presence of interacting factors.
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The role of spatial structure in the evolution of organ-
isms, and in particular of infectious diseases, is far from
clear-cut: several facets interact over a range of spatial and
temporal scales. As with many systems, evolutionary fit-
ness is environment-specific and the environment is in
turn modified by the organism. Much more work is neces-
sary before modelling techniques can quantitatively pre-
dict the behaviour of diseases from an evolutionary
perspective, although general patterns have emerged. We
have highlighted the complexities involved in understand-
ing evolution in a spatial context, and have demonstrated
that ignoring the spatial component (as in mean-field
models) leads to large qualitative errors.

This work was supported by the BBSRC and The Royal
Society (M.J.K.). We thank Debora Field and three anony-
mous reviewers for their helpful comments and for greatly
improving this paper.

APPENDIX A

(a) Network construction
A transmission network is comprised of N individuals

(nodes) uniformly distributed across a plane of dimen-
sions Ö N ´ Ö N, thereby ensuring the average density of
individuals remains constant regardless of network size.
The connectivity kernel, K, defines the probability of con-
nection between nodes separated by a distance d:

K = p.expS 2d2

2D2 D ,

where the value of p is chosen such that the expected num-
ber of connections per individual is n, and D determines
the average distance between linked individuals. In this
way local networks (D = 1) and global networks (D = 50)
can be constructed such that they have approximately the
same mean number of connections per node. For an infi-
nitely large population,

p =
n

2pD2.

In practice, the finite size of the population together with
edge effects will mean that p will have to be increased from
this theoretical prediction. This discrepancy is corrected
by comparing the average number of connections per node
within a trial network (constructed assuming a value of p
for an infinitely large population) to the desired n, and
scaling p accordingly. During a simulation, new nodes
(births or infectious imports) are connected to the existing
network using K, in an identical manner to normal net-
work construction.

(b) Disease dynamics
The model is updated synchronously and therefore

compares to a discrete-time model of infection. Given a
link between a susceptible individual and an infected indi-
vidual, the per iteration probability, p, that infection
passes across the link is

p = 1 2 exp(2t),

where t is the transmission rate of the strain concerned.
The time since infection is tracked so that the infectious
period is modelled as a fixed length, which is an integral
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number of iterations. After this allotted time individuals
pass into the recovered class, and are removed from the
network as they play no further role in the SIR model.

(c) Strain evolution
Whenever a susceptible host becomes infected, the dis-

ease parameters of the ‘strain’ that colonizes the newly
infected host deviate slightly from those possessed by the
source of infection, thus mimicking the random mutation
of disease parameters. This mutation occurs at each new
infection event. In particular, for a given transmission rate
t, the transmission rate of secondary infections is given by

t9 = t(1 1 «t),

where « t is a Gaussian distribution with mean zero and a
standard deviation of std(t), and for a given infectious per-
iod

P 9in f = Pin f 1 «Pin f,

where «Pin f is a Gaussian distribution with mean zero and
a standard deviation of std(Pin f ). Mutated infectious per-
iods are rounded to the nearest integer and must be posi-
tive or zero. It is more natural to deal with transmission
rate in this form, so that mutation acts multiplicatively,
although this does not affect our results. Thus mutation
alone should lead to an unbiased random walk.

(d) Infected imports
To prevent complete extinction of the disease for the

whole time-period of each simulation, we introduce
infected individuals at a low probabilistic rate, m, at the
end of an iteration and connect them to the host contact
network in a similar manner to births. We assume that
these imports are representative of recent infections by
using running averages of both t and Pin f over the last
100 infections.
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